						Table of Specifications						
$\begin{gathered} \text { Days \& } \\ \% \text { of Coverage } \end{gathered}$		5		Knowledge and Skills	Item Type (ex. multiple choice, performance, true false, essay, etc.)	Complexity Webb's DOK				$\begin{gathered} \text { Total \# } \\ \text { of } \\ \text { Items } \end{gathered}$	\% Lesson	\% Unit
								$\begin{aligned} & \infty=0 \\ & 0 \\ & 0 \end{aligned}$	道			
$49$33\%	$17$$11 \%$	1	1	K1- Describe the job responsibilities of various types of engineers and engineering technicians.						0	\#DIV/o!	\#DIV/o!
				K2 - Know the six simple machines, their attributes, and components.						0	\#DIV/o!	\#DIV/o!
				K_{3} - Know the equations to solve for mechanical advantage, work, and power.						0	\#DIV/o!	\#DIV/o!
				S1- Differentiate among the various types of engineering careers and engineering technicians.						0	\#DIV/o!	\#DIV/o!
				S2-Measure forces and distances related to mechanisms.						0	\#DIV/o!	\#DIV/o!
				S3- Distinguish among the six simple machines, their attributes, and components.						0	\#DIV/o!	\#DIV/o!
				S4-Calculate mechanical advantage and drive ratios of mechanisms.						0	\#DIV/o!	\#DIV/o!
				S5- Design, create, and test systems using simple machines and drive mechanisms.						0	\#DIV/o!	\#DIV/o!
				S6-Calculate work and power in mechanical systems.						0	\#DIV/o!	\#DIV/o!
				S7- Determine efficiency in a mechanical system.						0	\#DIV/o!	\#DIV/o!
				S8 - Design, create, test, and evaluate a compound machine design.						0	\#DIV/o!	\#DIV/o!
				S9-Communicate a design for a machine using annotated sketches and other documentation.						0	\#DIV/o!	\#DIV/o!
				S10-Collaborate effectively with others in a design team.						0	\#DIV/o!	\#DIV/o!
	9	1	2	K1- Describe the characteristics of various sources of energy.						0	\#DIV/o!	\#DIV/0!
				K2 - Know types of nonrenewable, renewable, and inexhaustible energy sources.						0	\#DIV/o!	\#DIV/o!
				K_{3} - Know the equations for work and power.						0	\#DIV/o!	\#DIV/o!
				K4-Know the equation for calculation the efficiency of a system.						0	\#DIV/o!	\#DIV/o!
				K_{5} - Know the equations related to describing the characteristics of simple circuits.						0	\#DIV/o!	\#DIV/o!
				S1- Prepare and deliver a brief summary based on research.						0	\#DIV/o!	\#DIV/o!
				S2-Calculate work and power.						0	\#DIV/o!	\#DIV/o!
				S3-Correctly use a digital multimeter as a voltmeter, ohmmeter, or ammeter.						0	\#DIV/o!	\#DIV/o!
				S4-Calculate electrical power developed in a circuit.						0	\#DIV/o!	\#DIV/o!
				S5-Calculate mechanical power developed when lifting an object.						0	\#DIV/o!	\#DIV/o!
				S6 - Determine efficiency of a system that converts an electrical energy to a mechanical energy.						0	\#DIV/o!	\#DIV/o!
				S7-Calculate circuit resistance, current, and voltage using Ohm's law, including circuits with elements in series and/or parallel.						0	\#DIV/o!	\#DIV/o!
				S8 - Compare and contrast the behavior of electrical circuits with parallel and series circuit designs.						0	\#DIV/o!	\#DIV/o!
	107\%	1	3	K1 - Explain that hydrogen fuel cells transform chemical energy stored in hydrogen gas to electrical energy and heat, converting hydrogen and oxygen into water.						o	\#DIV/o!	\#DIV/o!
				K2 - Describe the use of reversible fuel cells as electrolyzers to store electrical energy for later use.						0	\#DIV/o!	\#DIV/o!
				K3 - Describe the use of solar cells to convert light energy into electricity.						0	\#DIV/o!	\#DIV/o!
				K4 - Describe convection, conduction, and radiation as they relate to thermal energy transfer.						0	\#DIV/o!	\#DIV/o!
				S1 - Test and apply the relationships among voltage, current, and resistance in series and parallel circuits that incorporate photovoltaic cells and hydrogen fuel cells.						o	\#DIV/o!	\#DIV/o!
				S2 - Design a system to convert solar power to mechanical power using photovoltaic and fuel cells.						0	\#DIV/o!	\#DIV/o!
				S_{3} - Design, construct, and test insulation materials for reducing thermal energy transfer.						0	\#DIV/o!	\#DIV/o!
				S4-Calculate the rate at which energy is transferred by conduction and radiation through materials having various R-values.						0	\#DIV/o!	\#DIV/0!
	$\begin{array}{r} 13 \\ \mathbf{9 \%} \end{array}$	1	4	K1 - Know the purpose of each part of a design brief.						0	\#DIV/o!	\#DIV/o!
				K2 - Describe a step-by-step, iterative design process.						0	\#DIV/o!	\#DIV/0!
				S1- Brainstorm and sketch possible solutions to an existing design problem.						0	\#DIV/o!	\#DIV/o!
				S2 - Create a decision making matrix for their design problem.						0	\#DIV/o!	\#DIV/o!
				S3-Select an approach that meets or satisfies the constraints provided in a design brief.						0	\#DIV/o!	\#DIV/o!
				S4-Create a detailed pictorial sketch or use 3D modeling software to document a proposed design.						o	\#DIV/o!	\#DIV/o!
				S5 - Present a workable solution to a design problem.						0	\#DIV/o!	\#DIV/o!
$\begin{gathered} \hline 40 \\ 27 \% \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{9 \%} \end{gathered}$	2	1	K1 - Differentiate between scalar and vector quantities.						0	\#DIV/0!	\#DIV/o!
				K2 - Identify magnitude, direction, and sense of a vector.						0	\#DIV/o!	\#DIV/o!
				K_{3} - Know beam deflection is related to cross sectional geometry and material properties.						0	\#DIV/o!	\#DIV/o!
				K4-Know the moment of inertia is related cross sectional geometry.						0	\#DIV/o!	\#DIV/o!
				K_{5} - Know the modulus of elasticity defines the stiffness of an object related to material and chemical properties.						0	\#DIV/o!	\#DIV/o!
				K6 - Know the forces acting on an object are in equilibrium.						o	\#DIV/o!	\#DIV/o!
				K7 - Understand how Newton's Laws are applied to determine the forces acting on an object.						o	\#DIV/o!	\#DIV/o!
				S1-Create free body diagrams of objects, identifying all forces acting on the object.						0	\#DIV/o!	\#DIV/o!
				S2 - Mathematically locate the centroid of structural members.						0	\#DIV/o!	\#DIV/o!
				S3-Calculate the area moment of inertia of structural members.						0	\#DIV/o!	\#DIV/0!
				S4-Calculate the deflection of a center-loaded beam from the beam's geometry and material properties.						0	\#DIV/o!	\#DIV/o!
				S_{5} - Calculate the x - and y -components of a given vector.						0	\#DIV/o!	\#DIV/o!
				S6-Calculate moments or torques given a force and a point of application relative to a specified axis.						0	\#DIV/o!	\#DIV/o!
				S7- Use equations of equilibrium to calculate unknown external forces on a truss.						0	\#DIV/o!	\#DIV/o!
				S8 - Use the method of joints to calculate tension and compression forces in the members of a statically determinate truss.						0	\#DIV/o!	\#DIV/o!
				S9 - Construct and destructively test a truss, and relate observations to calculated predications.						0	\#DIV/o!	\#DIV/o!
	11	2	2	K1 - List material properties that are important too design including mechanical, chemical, electrical, and magnetic.						\bigcirc	\#DIV/o!	$\frac{\text { \#DIV/o! }}{\text { \#DIV/o! }}$
				K2 - Know common manufacturing processes related to create a product from raw materials.						0	\#DIV/o!	\#DIV/o!

LTW \quadPOE Blueprint The purpose of this assessment is to ...						Table of Specifications						
$\begin{gathered} \text { Days \& } \\ \text { \% of Coverage } \end{gathered}$			厒	Knowledge and Skills	Item Type (ex. multiple choice, performance, true false, essay, etc.)	Complexity Webb's DOK				$\begin{gathered} \text { Total \# } \\ \text { of } \\ \text { Items } \end{gathered}$	\% Lesson	\% Unit
Unit Lesson									舞			
46 31\%	7\%			K3-Know the steps of product life cycle for a common product.						o	\#DIV/o!	\#DIV/o!
				S1 - Conduct non-destructive tests for material properties on selected common household products including tests for continuity, ferrous metal, hardness, and flexure.						o	\#DIV/o!	\#DIV/o!
				S2 - Measure or calculate weight, volume, mass, density, and surface area of selected common household products.						0	\#DIV/o!	\#DIV/o!
				S3 - Identify the manufacturing processes used to create the selected common household product.						0	\#DIV/o!	\#DIV/o!
				S4-Identify materials that can be recycled.						o	\#DIV/o!	\#DIV/o!
	10 7\%	2	3	K1 - Distinguish between stress and strain.						o	\#DIV/o!	\#DIV/o!
				K2 - Distinguish between elastic and plastic deformation.						0	\#DIV/o!	\#DIV/o!
				K_{3} - Describe the relationship between the tensile force applied to a material and the elongation of the material as it deforms elastically, plastically, and then ruptures.							\#DIV/o!	\#DIV/o!
				K4- Define the modulus of elasticity.							\#DIV/o!	\#DIV/o!
				S1-Calculate minimum or maximum design parameters to ensure a safe or reliable product using material strength properties.						0	\#DIV/o!	\#DIV/o!
				S2 - Measure axial force and elongation data of material samples and create stress-strain diagrams describing the intrinsic properties of the materials.						o	\#DIV/o!	\#DIV/o!
				S3 - Identify and calculate test sample material properties using a stress-strain curve.						0	\#DIV/o!	\#DIV/o!
	5$3 \%$	2	4	K1 - Know the purpose of each part of a design brief.						0	\#DIV/o!	\#DIV/o!
				K2 - Describe a step-by-step, iterative design process.						0	\#DIV/o!	\#DIV/o!
				S1 - Brainstorm and sketch possible solutions to an existing design problem.						0	\#DIV/o!	\#DIV/o!
				S2 - Create a decision-making matrix for a design problem.						o	\#DIV/o!	\#DIV/o!
				S3-Select an approach that meets or satisfies the constraints provided in a design brief.						o	\#DIV/o!	\#DIV/o!
				S4 - Create a detailed pictorial sketch or use 3D-modeling software to document a proposed design.						0	\#DIV/o!	\#DIV/o!
	$\begin{gathered} \hline 16 \\ \mathbf{1 1 \%} \end{gathered}$	3	1	K1 - Distinguish between digital and analog data, and between the inputs and outputs of a computational system.						0	\#DIV/o!	\#DIV/0!
				K2 - Distinguish open and closed loop systems based on whether decisions are made using time delays or sensor feedback.						0	\#DIV/o!	\#DIV/o!
				K3 - Identify the relative advantage of an open-loop or closed-loop control system for a given technological problem.						0	\#DIV/o!	\#DIV/o!
				K4 - Describe the market demand and salary range for one type of engineer or engineering technician, and understand the education path that leads to that career.						o	\#DIV/o!	\#DIV/o!
				S1 - Choose appropriate input and output devices based on the need of a technological system.						0	\#DIV/o!	\#DIV/o!
				S2 - Create a flow chart to describe an algorithm.						o	\#DIV/o!	\#DIV/o!
				S3-Create pseudocode to describe an algorithm.						o	\#DIV/o!	\#DIV/o!
				S4 - Analyze and describe an algorithm represented as a flowchart or as programming code.						o	\#DIV/o!	\#DIV/o!
				S_{5} - Create a computer program to implement an algorithm, including conditional statements and iterations.						o	\#DIV/o!	\#DIV/o!
				S6 - Predict the behavior of a control system by examining the program it is going to execute.						0	\#DIV/o!	\#DIV/o!
				S7-Evaluate algebraic and logical expressions involving programming variables.						0	\#DIV/o!	\#DIV/o!
				S8 - Use a variety of methods for finding, identifying, and correcting bugs in a program.						0	\#DIV/o!	\#DIV/o!
				S9 - Design and create a control system, including the inputs, computer program, and outputs, based on given needs and constraints.						0	\#DIV/o!	\#DIV/o!
				S10 - Brainstorm and sketch possible solutions to an existing design problem.						0	\#DIV/o!	\#DIV/o!
				S11-Create a decision making matrix for a design problem.						o	\#DIV/o!	\#DIV/o!
				S12 - Select an approach that meets or satisfies the constraints provided in a design brief.						o	\#DIV/o!	\#DIV/o!
				S13 - Create a detailed pictorial sketch or use 3D modeling software to document a proposed design.						0	\#DIV/o!	\#DIV/o!
				S14- Present a workable solution to a design problem.						0	\#DIV/o!	\#DIV/o!
	$\begin{gathered} 15 \\ \mathbf{1 0 \%} \end{gathered}$	3	2	K1 - Identify the advantages of hydraulic and pneumatic systems relative to each other.						0	\#DIV/o!	\#DIV/o!
				K2 - Identify and explain basic components and functions of fluid power devices.						0	\#DIV/o!	\#DIV/o!
				K3 - Distinguish between pressure and absolute pressure.						0	\#DIV/o!	\#DIV/0!
				K4- Distinguish between temperature and absolute temperature.						0	\#DIV/o!	\#DIV/o!
				S1 - Identify devices that utilize hydraulic and pneumatic power.						0	\#DIV/o!	\#DIV/o!
				S2 - Distinguish between hydrodynamic and hydrostatic systems.						0	\#DIV/o!	\#DIV/o!
				S_{3} - Design, create, and test a hydraulic device.						o	\#DIV/o!	\#DIV/o!
				S4 - Design, create, and test a pneumatic device.						o	\#DIV/o!	\#DIV/o!
				S_{5} - Calculate design parameters in a fluid power system utilizing Pascal's Law.						0	\#DIV/o!	\#DIV/o!
				S6-Calculate values in a pneumatic system utilizing the ideal gas laws.						0	\#DIV/o!	\#DIV/o!
				S7-Calculate flow rate, flow velocity, power, and mechanical advantage in a fluid power system.						0	\#DIV/o!	\#DIV/o!
	15	3	3	K1 - Know the purpose of each part of a design brief.						0	\#DIV/o!	\#DIV/o!
				K2 - Describe a step-by-step, iterative design process.						0	\#DIV/o!	\#DIV/o!
				S1 - Brainstorm and sketch possible solutions to an existing design problem.						o	\#DIV/o!	\#DIV/o!
				S2 - Create a decision making matrix for a design problem.						0	\#DIV/o!	\#DIV/o!
	10\%			S3-Select an approach that meets or satisfies the constraints provided in a design brief.						o	\#DIV/o!	\#DIV/o!
				S4-Create a detailed pictorial sketch or use 3D modeling software to document a proposed design.						o	\#DIV/o!	\#DIV/o!
				S5-Present a workable solution to a design problem.						0	\#DIV/o!	\#DIV/o!
	5	4	1	K1 - Name measures of central tendency and variation and describe their meaning. K2 - Distinguish between sample statistics and population statistics and know appropriate applications of each. S1 - Evaluate how personal career interests align or do not align with one or more fields of engineering or engineering technology.						0	\#DIV/o!	\#DIV/o!
											\#DIV/o!	\#DIV/o!
										o	\#DIV/o!	\#DIV/o!

