
PLTW Engineering

PLTW Engineering Formula Sheet 2020 (v20.0)

1.0 Statistics	Mode
$\label{eq:mean_state} \begin{split} \frac{\textit{Mean}}{\mu = \frac{\sum x_i}{N}} & \overline{x} = \frac{\sum x_i}{n} & \text{(1.1b)} \\ \hline \mu = \text{population mean} \\ \overline{x} = \text{sample mean} \\ \sum x_i = \text{sum of all data values } (x_1, x_2, x_3, \ldots) \\ N = \text{size of population} \\ n = \text{size of sample} \end{split}$	Place data in ascending order. Mode = most frequently occurring value (1.4) If two values occur with maximum frequency the data set is <i>bimodal</i> . If three or more values occur with maximum frequency the data set is <i>multi-modal</i> . Standard Deviation
Median Place data in ascending order.	$\frac{\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \text{ (Population)} (1.5a)}{\sqrt{\sum (x_i - \overline{x})^2}}$
If N is odd, median = central value(1.2)If N is even, median = mean of two central valuesN = size of population	$\frac{s = \sqrt{\frac{\sum(x_i - \overline{x})^2}{n-1}} \text{ (Sample)} (1.5b)}{\sigma = \text{population standard deviation}}$
Range (1.5)Range = $x_{max} - x_{min}$ x_{max} = maximum data value x_{min} = minimum data value	x_i = individual data value ($x_1, x_2, x_3,$) μ = population mean \overline{x} = sample mean N = size of population n = size of sample
2.0 Probability	Independent Events
$Frequency$ $f_{x} = \frac{n_{x}}{n}$ (2.1)	$ \begin{array}{l} \mbox{P (A and B and C) = $P_AP_BP_C$} (2.3) \\ \mbox{P (A and B and C) = probability of independent} \\ \mbox{events A and B and C occurring in sequence} \\ \mbox{P_A = probability of event A} \end{array} $
f_x = relative frequency of outcome x n_x = number of events with outcome x n = total number of events	$\frac{Mutually Exclusive Events}{P (A \text{ or } B) = P_A + P_B} $ (2.4)
Binomial Probability (order doesn't matter) $P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!}$	P (A or B) = probability of either mutually exclusive event A or B occurring in a trial P _A = probability of event A
$P_{k} = \frac{(2.2)}{k!(n-k)!}$ (2.2) $P_{k} = \text{binomial probability of k successes in n trials}$ $p = \text{probability of a success}$ $q = 1 - p = \text{probability of failure}$ $k = \text{number of successes}$ $n = \text{number of trials}$	$\frac{Conditional Probability}{P(A D) = \frac{P(A) \cdot P(D A)}{P(A) \cdot P(D A) + P(\sim A) \cdot P(D \sim A)}}$ (2.5) $P(A D) = \text{probability of event A given event D}$ $P(A) = \text{probability of event A occurring}$ $P(-A) = \text{probability of event A not occurring}$ $P(D \sim A) = \text{probability of event D given event A did not occur}$

6.0 Conversions

Mass/Weight (6.1) 1 kg = 2.205 lbm 1 slug = 32.2 lbm 1 ton = 2000 lb 1 lb = 16 oz	Area (6.4) 1 acre = 4047 m ² = 43,560 ft ² = 0.00156 mi ² Volume (6.5)	Pressure (6.8)1 atm= 1.01325 bar= 33.9 ft H2O= 29.92 in. Hg= 760 mm Hg= 101,325 Pa	Rotational Speed (6.11) 1 Hz = 60 rpm = 2π rad/sec
<i>Length (6.2)</i> 1 m = 3.28 ft 1 km = 0.621 mi	$1L = 0.264 \text{ gal} = 0.0353 \text{ ft}^3 = 33.8 \text{ fl oz}$ $1\text{mL} = 1 \text{ cm}^3 = 1 \text{ cc}$	= 14.7 psi 1psi = 2.31 ft of H ₂ O Power (6.9)	7.0 Defined Units
1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft	Temperature Unit Equivalents (6.6) *Use equation in section 9.0 to convert	1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lbf/s	$ \begin{array}{rcl} 1 & J &= 1 & N \cdot m \\ 1 & N &= 1 & kg \cdot m / s^2 \\ 1 & Pa &= 1 & N / m^2 \\ 1 & V &= 1 & W / A \end{array} $
<i>Time (6.3)</i> 1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d	$\Delta 1 \text{ K} = \Delta 1 ^{\circ}\text{C}$ = $\Delta 1.8 ^{\circ}\text{F}$ = $\Delta 1.8 ^{\circ}\text{R}$ Force (6.7) 1 N = 0.225 lb 1 kip = 1,000 lb	1 hp = 550 ft·lb/sec Energy (6.10) 1 J = 0.239 cal = 9.48 x 10 ⁻⁴ Btu = 0.7376 ft·lb _f 1kW h = 3,600,000 J	$ \begin{array}{rcl} 1 & W &= 1 & J / s \\ 1 & \Omega &= 1 & V / A \\ 1 & Hz &= 1 & s^{-1} \\ 1 & F &= 1 & A \cdot s / V \\ 1 & H &= 1 & V \cdot s / A \end{array} $

8.0 SI Prefixes

Numbers Less Than One			
Power of 10	Decimal Equivalent	Prefix	Abbreviation
10 ⁻¹	0.1	deci-	d
10 ⁻²	0.01	centi-	С
10 ⁻³	0.001	milli-	m
10 ⁻⁶	0.000001	micro-	μ
10 ⁻⁹	0.00000001	nano-	n
10 ⁻¹²		pico-	р
10 ⁻¹⁵		femto-	f
10 ⁻¹⁸		atto-	а
10 ⁻²¹		zepto-	Z
10 ⁻²⁴		yocto-	У

I

Numbers Greater Than One			
Power of 10	Whole Number Equivalent	Prefix	Abbreviation
10 ¹	10	deca-	da
10 ²	100	hecto-	h
10 ³	1000	kilo-	k
10 ⁶	1,000,000	Mega-	М
10 ⁹	1,000,000,000	Giga-	G
10 ¹²		Tera-	Т
10 ¹⁵		Peta-	Р
10 ¹⁸		Exa-	E
10 ²¹		Zetta-	Z
10 ²⁴		Yotta-	Y

9.0 Equations

Mass and Weight	
m = VD _m	(9.1)
W = mg	(9.2)
$W=VD_w$	(9.3)
$V = volume$ $D_m = mass$ $m = mass$ $D_w = weight$ $W = weight$ $g = accelerations$	

Temperature	
$T_{K} = T_{C} + 273$	(9.4)
$T_{R} = T_{F} + 460$	(9.5)
$T_{F} = \frac{9}{5}T_{c} + 32$	(9.6a)
$T_{\rm C} = \frac{T_{\rm F}-32}{1.8}$	(9.6b)
T_{K} = temperature in Kelvin T_{C} = temperature in Celsius T_{R} = temperature in Rankin T_{F} = temperature in Fahrenheit	

Force and Moment			
F = ma	(9.7a)	$M=Fd_{\!\perp}$	(9.7b)
F = force m = mass a = acceleration M = moment d ₁ = perpendicular distance			
d⊥= perp	endicular c	listance	
		listance i c Equilibri	um
Equatio	ns of Stati		

9.0 (Continued) Equations

(9.9)

Energy: Work

$$W = F_{\parallel} \cdot d$$

W = work

F_{II} = force parallel to direction of displacementd = displacement

Power $P = \frac{E}{t} = \frac{W}{t}$ (9.10) $P = \tau \omega$ (9.11)P = power(9.11)P = power(9.11)W = work(9.11)t = time(9.11) $\tau = torque$ $\omega = angular velocity$

Efficiency

Efficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$
 (9.12)
 P_{out} = useful power output
 P_{in} = total power input

Energy: Potential U = mgh (9.13) U = potential energy m =mass g = acceleration due to gravity h = height

Energy: Kinetic		
$K = \frac{1}{2} mv^2$		

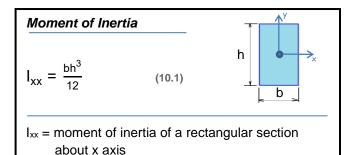
(9.14)

K = kinetic energy

m = mass v = velocity

Energy: Thermal

$$\label{eq:Q} \begin{split} & \Delta Q = mc \Delta T \qquad \mbox{(9.15)} \\ \hline & \Delta Q = change in thermal energy \\ & m = mass \\ & c = specific heat \\ & \Delta T = change in temperature \end{split}$$


 ΔT = change in temperature © 2020 Project Lead The Way, Inc. PLTW Engineering Formula Sheet v20.0

Fluid Mechanics		
$p = \frac{F}{A}$	(9.16)	
$\frac{V_1}{T_1} = \frac{V_2}{T_2}$ (Charles' Law)	(9.17)	
$\frac{p_1}{T_1} = \frac{p_2}{T_2}$ (Gay-Lussanc's	Law) (9.18)	
$p_1V_1 = p_2V_2$ (Boyle's L	aw) (9.19)	
Q = Av	(9.20)	
$A_1v_1 = A_2v_2$	(9.21)	
P = Qp	(9.22)	
absolute pressure = gau + atmospheric p		
 p = absolute pressure F = force A = area V = volume T = absolute tempera Q = flow rate v = flow velocity P = power 		
Mechanics		
$\overline{S} = \frac{d}{t}$	(9.24)	
$\overline{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$	(9.25)	
$a = \frac{v_f - v_i}{t}$	(9.26)	
$X = \frac{v_i^2 \sin(2\theta)}{-g}$	(9.27)	
$v = v_i + at$	(9.28)	
$d = d_i + v_i t + \frac{1}{2} a t^2$	(9.29)	
$v^2 = v_i^2 + 2a(d - d_i)$	(9.30)	
$\tau = dFsin\theta$	(9.31)	
\overline{s} = average speed \overline{v} = average velocity v = velocity v_i = initial velocity (t =0) a = acceleration X = range t = time Δd = change in displacement d = distance d_i = initial distance (t=0) g = acceleration due to gravity θ = angle τ = torque F = force		

Electricity		
Ohm's Law		
V = IR	(9.32)	
P = IV	(9.33)	
R_T (series) = $R_1 + R_2 + \cdots + R_n$	n (9.34)	
R_{T} (parallel) = $\frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}}$	(9.35)	
Kirchhoff's Current Law $I_T = I_1 + I_2 + \dots + I_n$ or $I_T = \sum_{k=1}^n I_k$	(9.36)	
Kirchhoff's Voltage Law $V_T = V_1 + V_2 + \dots + V_n$ or $V_T = \sum_{k=1}^n V_k$	(9.37)	
$V = voltage$ $V_{T} = total voltage$ $I = current$ $I_{T} = total current$ $R = resistance$ $R_{T} = total resistance$ $P = power$		
Thermodynamics		
	9.38)	
$P = Q' = \frac{\Delta Q}{\Delta t} $ (9)	9.39)	
R L `	9.40)	
$P = \frac{kA\Delta T}{L} $ (9)	9.41)	
$A v = A_2 v_2$	9.42)	
	9.43)	
$\mathbf{k} = \frac{PL}{A\DeltaT} \tag{9}$	9.44)	
$\begin{array}{l} P = rate of heat transfer \\ Q = thermal energy \\ A = area of thermal conductivity \\ U = coefficient of heat conductivity \\ (U-factor) \\ \DeltaT = change in temperature \\ \Deltat = change in time \\ R = resistance to heat flow (R-value) \\ k = thermal conductivity \\ v = velocity \\ P_{net} = net power radiated \\ \sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4} \\ e = emissivity constant \\ L = thickness \\ T_1, T_2 = temperature at time 1, time 2 \end{array}$		
.,speratare at ante	, c _	

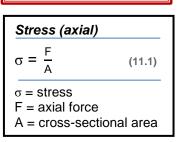
V20.0

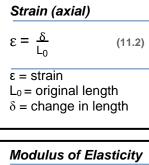
10.0 Section Properties

(10.2)

Complex Shapes Centroid

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i} \text{ and } \overline{y} = \frac{\sum y_i A_i}{\sum A_i}$$


$$\overline{\overline{x}} = x \text{-distance to the centroid}$$


$$\overline{y} = y \text{-distance to centroid of shape i}$$

$$y_i = y \text{-distance to centroid of shape i}$$

 A_i = Area of shape i

11.0 Material

$E = \frac{\sigma}{2}$ (11.3)

$$E = \frac{\sigma}{\epsilon}$$
 (11.3)

$$E = \frac{(F_2 - F_1)L_0}{(\delta_2 - \delta_1)A}$$
 (11.4)

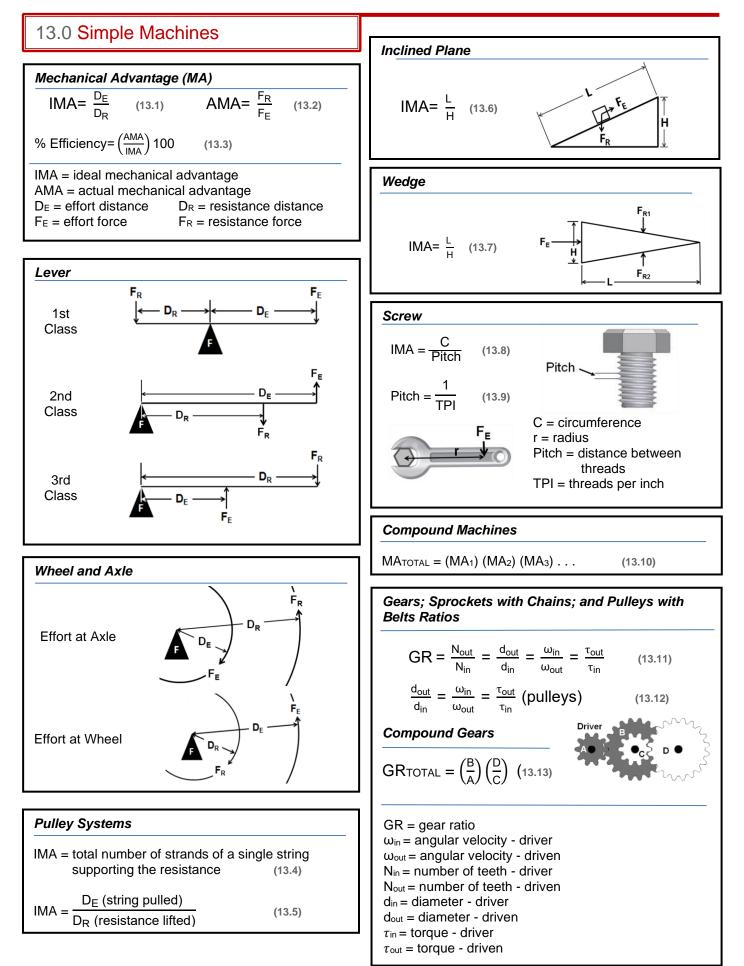
$$E = \text{modulus of elasticity}$$

$$\sigma = \text{stress}$$

$$\epsilon = \text{strain}$$

$$A = \text{cross-sectional area}$$

$$F = \text{axial force}$$


$$\delta = \text{deformation}$$

Beam Formulas				
↓ ↓		ction	$R_A = R_B = \frac{P}{2}$	(12.1)
A 7777 L 7777 B		nent	$M_{max} = \frac{PL}{4}$ (at point of load)	
	Defl	lection	$\Delta_{\max} = \frac{PL^3}{48EI}$ (at point of load) (12.3)
	Rea	ction	$R_A = R_B = \frac{\omega L}{2}$	(12.4)
A	Mor	nent	$M_{max} = \frac{\omega L^2}{8}$ (at center)	(12.5)
L	Defl	lection	$\Delta_{\max} = \frac{5\omega L^4}{384 \text{EI}} \text{ (at center)}$	(12.6)
p p	Rea	ction	R _A = R _B =P	(12.7)
• •	Mor	nent	M _{max} = Pa	(12.8)
	Defl	lection	$\Delta_{\max} = \frac{Pa}{24Ei} (3L^2 - 4a^2)$ (at center)	(12.9)
P	Rea	ction	$R_A = \frac{Pb}{L}$ and $R_B = \frac{Pa}{L}$	(12.10)
	Mor	nent	$M_{max} = \frac{Pab}{L}$ (at Point of Load	d) (12.11)
A B	Defl	lection	2/EIL	(12.12)
			(at $x = \sqrt{\frac{a(a+2b)}{3}}$ when a>b)
			E = modulus of elasticity I = moment of inertia	
Deformation: Axial		Γ	Truss Analysis	
$\delta = \frac{FL_0}{AE} $ (12.13)			2J = M + R	(12.14)
AE			J = number of joints	
$\delta = deformation$			M =number of members R = number of reaction force	
F = axial force L ₀ = original length		L		5
A = cross-sectional area				
E = modulus of elasticity				

Rectangle Centroid $\bar{x} = \frac{b}{2}$ and $\bar{y} = \frac{h}{2}$ (10.3)Right Triangle Centroid $\bar{x} = \frac{b}{3}$ and $\bar{y} = \frac{h}{3}$ (10.4)Semi-circle Centroid $\bar{x} = r$ and $\bar{y} = \frac{4r}{3\pi}$ (10.5)

 \overline{x} = x-distance to the centroid \overline{y} = y-distance to the centroid

12.0 Structural Analysis

14.0 Structural Design

Steel Beam Design: Shear		
$V_a \le \frac{V_n}{\Omega_v}$	(14.1)	
$V_n = 0.6 F_y A_w$	(14.2)	
V _a = internal shear V _n = nominal shear $\Omega_v = 1.5 = factor o$ F _y = yield stress A _w = area of web $\frac{v_n}{Q_n}$ = allowable shear	r strength f safety for shear	

15.0 Storm Water Runoff

Storm Water Drainage	
$Q = C_f CiA$	(15.1)
$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$	(15.2)
Q = peak storm water runoff C_f = runoff coefficient adjust C = runoff coefficient i = rainfall intensity (in./h) A = drainage area (acres)	```
	-
Runoff Coefficient Adjustment Factor	

Aujustment ractor						
Return Period	Cf					
1, 2, 5, 10	1.0					
25	1.1					
50	1.2					
100	1.25					

Steel Beam Des	ign: Moment
$M_a \le \frac{M_n}{\Omega_b}$	(14.3)
$M_n=F_yZ_x$	(14.4)
$\begin{split} M_a &= \text{internal ben}\\ M_n &= \text{nominal mo}\\ \Omega_b &= 1.67 = \text{facto}\\ \text{bending f}\\ F_y &= \text{yield stress}\\ Z_x &= \text{plastic section}\\ \text{neutral a} \end{split}$	ment strength r of safety for moment on modulus about
$\frac{M_n}{\Omega_h}$ = allowable b	ending strength

Rational Method Ru Coefficients	unoff
Categorized b	y Surface
Forested	0.059—0.2
Asphalt	0.7—0.95
Brick	0.7—0.85
Concrete	0.8—0.95
Shingle roof	0.75—0.95
Lawns, well draine	ed (sandy soil)
Up to 2% slope	0.05-0.1
2% to 7% slope	0.10-0.15
Over 7% slope	0.15—0.2
Lawns, poor drain	
Up to 2% slope	0.13—0.17
2% to 7% slope	0.18—0.22
Over 7% slope	0.25—0.35
Driveways,	0.75—0.85
Categorized	by Use
Farmland	0.05—0.3
Pasture	0.05—0.3
Unimproved	0.1—0.3
Parks	0.1—0.25
Cemeteries	0.1—0.25
Railroad yard	0.2-0.40
Playgrounds	0.2—0.35
Business Districts	
Neighborhood	0.5—0.7
City (downtown)	0.7—0.95
Residential	
Single-family	0.3—0.5
Multi-plexes,	0.4—0.6
Multi-plexes,	0.6—0.75
Suburban	0.25—0.4
Apartments,	0.5—0.7
Industr	rial
Light	0.5—0.8
Heavy	0.6—0.9
	1

Spread Footing Design

$q_{net} = q_{allowable} - p_{footing}$	(14.5)
$p_{footing} = t_{footing} \cdot 150 \frac{1b}{ft^3}$	(14.6)
$q = \frac{P}{A}$	(14.7)

 $q_{net} = net$ allowable soil bearing pressure $q_{allowable} = total allowable soil$ bearing pressure pfooting = soil bearing pressure due to footing weight tfooting = thickness of footing q = soil bearing pressure P = column load applied A = area of footing

16.0 Water Supply

Hazen-Williams Formula

$h_{f} = \frac{10.44 LQ^{1.85}}{C^{1.85} d^{4.8655}}$	(16.1)
h _f = head loss due to (ft of H ₂ O)	o friction
L = length of pipe (ft)
Q = water flow rate ((gpm)
C = Hazen-Williams	constant
d = diameter of pipe	(in.)

Dynamic Head

dynamic head = static head - head loss (16.2) static head = change in elevation between source and discharge

17.0 Heat Loss/Gain

Heat	Loss/Gain	

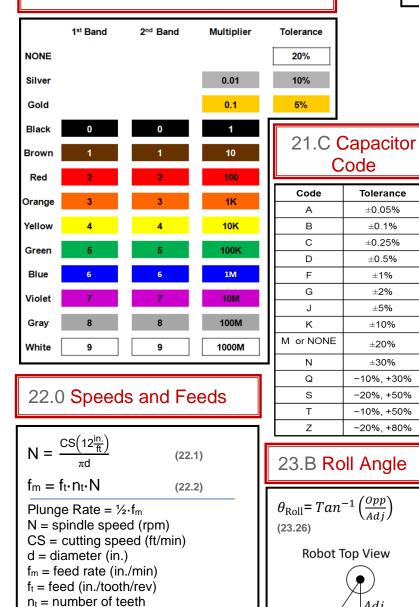
Q′ = AU∆T	(17.1)
$U = \frac{1}{R}$	(17.2)

Q = thermal energy A = area of thermal conductivity U = coefficient of heat conductivity (U-factor) ΔT = change in temperature R = resistance to heat flow (Rvalue)

18.0 Hazen-Williams Constants

Pipe Material	Typical Range	Clean New Pipe	Typical Design Values
Cast Iron and Wrought Iron	80 - 150	130	100
Copper, Glass, or Brass	120 - 150	140	130
Cement-Lined Steel or Iron	n/a	150	140
Plastic PVC or ABS	120 - 150	140	130
Steel (welded and seamless) or interior riveted	80 - 150	140	100

19.0 Equivalent Length of (Generic) Fittings


0		Pipe Size											
Screwed I	Fittings	1/4	3/8	1/2	3/4	1	1 1⁄4	1 1⁄2	2	2 ½	3	4	
Elbows	Regular 90 degree Long radius 90 degree	2.3 1.5	3.1 2.0	3.6 2.2	4.4 2.3	5.2 2.7	6.6 3.2	7.4 3.4	8.5 3.6	9.3 3.6	11.0 4.0	13.0 4.6	
LIDOWS	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5	
Tees	Line Flow Branch Flow	0.8	1.2 3.5	1.7 4.2	2.4 5.3	3.2 6.6	4.6 8.7	5.6 9.9	7.7 12.0	9.3 13.0	12.0 17.0	17.0 21.0	
Return	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0	
Valves	Globe Gate	21.0 0.3	22.0 0.5	22.0 0.6	24.0 0.7	29.0 0.8	37.0 1.1	42.0 1.2	54.0 1.5	62.0 1.7	79.0 1.9	110.0 2.5	
Turres	Angle Swing Check	12.8 7.2	15.0 7.3	15.0 8.0	15.0 8.8	17.0 11.0	18.0 13.0	18.0 15.0	18.0 19.0	18.0 22.0	18.0 27.0	18.0 38.0	
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0	

Flowwood			Pipe Size															
Flanged	Fittings	1/2	3/4	1	1 1⁄4	1 1/2	2	2 ½	3	4	5	6	8	10	12	14	16	18
	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
1662	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Bends	Long radius 180	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
Velvee	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Valves	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$T = 0.693 (R_A + 2R_B)C$	(20.1)
$f = \frac{1}{T}$	(20.2)
duty-cycle = $\frac{(R_A + R_B)}{(R_A + 2R_B)}$ 100%	(20.3)
T = period f = frequency $R_A = resistance A$ $R_B = resistance B$ C = capacitance	

21.B Resistor Color Code

21.A Boolean Algebra

Boolean The	eorems	C
X• 0 = 0	(21.1)	X
X•1 = X	(21.2)	X
X∙ X =X	(21.3)	Ī
X • X=0	(21.4)	Ī
X + 0 = X	(21.5)	
X + 1 = 1	(21.6)	
X + X = X	(21.7)	X
$X + \overline{X} = 1$	(21.8)	Х
$\overline{X} = X$	(21.9)	
		X

	Consensus Th	eorems	
	$X + \overline{X}Y = X + Y$	(21.16)	
	$X + \overline{X}\overline{Y} = X + \overline{Y}$	(21.17)	
	$\overline{X} + XY = \overline{X} + Y$	(21.18)	
	$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$	(21.19)	
11			
	DeMorgan's T	heorems	
	$\overline{XY} = \overline{X} + \overline{Y}$	(21.20)	
	$\overline{X+Y} = \overline{X} \bullet \overline{Y}$	(21.21)	
	Commutative Law		
1	X•Y = Y•X	(21.10)	
	X+Y = Y+X	(21.11)	
e	e Law		
()	Z	(21.12)	

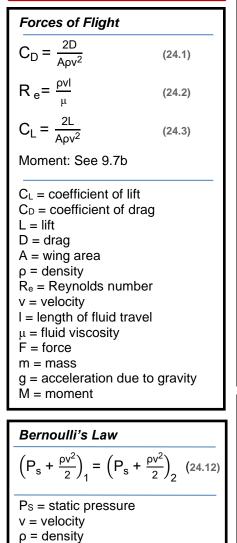
(21.13)

Distributive Law	
X(Y+Z) = XY + XZ	(21.14)
(X+Y)(W+Z) = XW+XZ+YW+YZ	(21.15)

23.A G&M Codes

Adj

 θ_{Roll}

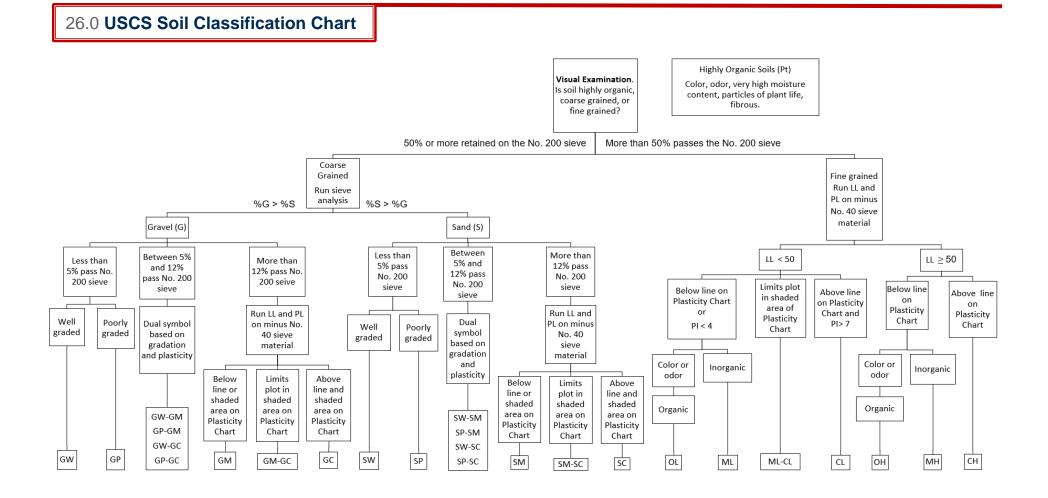

Associativ

X(YZ) = (XY)

X + (Y + Z) = (X + Y) + Z

G00 = Rapid Traverse	(23.1)
G01 = Straight Line Interpolation	(23.2)
G02 = Circular Interpolation (clockwise)	(23.3)
G03 = Circular Interpolation (c-clockwise)	(23.4)
G04 = Dwell (wait)	(23.5)
G05 = Pause for user intervention	(23.6)
G20 = Inch programming units	(23.7)
G21 = Millimeter programming units	(23.8)
G80 = Canned cycle cancel	(23.9)
G81 = Drilling cycle	(23.10)
G82 = Drilling cycle with dwell	(23.11)
G90 = Absolute Coordinates	(23.12)
G91 = Relative Coordinates	(23.13)
M00 = Pause	(23.14)
M01 = Optional stop	(23.15)
M02 = End of program	(23.16)
M03 = Spindle on	(23.17)
M05 = Spindle off	(23.18)
M06 = Tool change	(23.19)
M08 = Accessory # 1 on	(23.20)
M09 = Accessory # 1 off	(23.21)
M10 = Accessory # 2 on	(23.22)
M11 = Accessory # 2 off	(23.23)
M30 = Program end and reset	(23.24)
M47 = Rewind	(23.25)

24.0 Aerospace


Propulsion	
$F_N = W(v_j - v_o)$	(24.4)
I = F _{ave} ∆t	(24.5)
F _{net} = F _{avg} - F _g	(24.6)
$a = \frac{v_f}{\Delta t}$	(24.7)
$F_{N} = net thrust$ $W = air mass flow$ $v_{o} = flight velocity$ $v_{j} = jet velocity$ $I = total impulse$ $F_{ave} = average thrust$ $\Delta t = change in time ($ $duration)$ $F_{net} = net force$ $F_{avg} = average force$ $F_{g} = force of gravity$ $v_{f} = final velocity$ $a = acceleration$ $\Delta t = change in time ($ $duration)$ $NOTE: F_{ave} and F_{avg}$ $confused.$	thrust
Atmosphere Param	eters
T = 15.04 - 0.006	
$p = 101.29 \left[\frac{(T + 273)}{288.0} \right]$	$\left[\frac{3.1)}{8}\right]^{5.256}$ (24.14)
l	(24.15)
$\rho = \frac{\rho}{0.2869(T + 273.1)}$	(24.10)

Energy		
$K = \frac{1}{2} mv^2$	(24.8)	
$U = \frac{-GMm}{R}$	(24.9)	
$E = U + K = -\frac{GMm}{2R}$	(24.10)	
$G = 6.67 \times 10^{-11} \frac{m^3}{kg \times s^2}$	(24.11)	
 K = kinetic energy m = mass v = velocity U = gravitational potential energy G = universal gravitation constant M = mass of central body m = mass of orbiting object R = Distance center main body to center of orbiting object E = Total Energy of an orbit M_{Earth}= 5.97 x 10²⁴ kg r_{Earth} = 6.378 x 10³ km 		
Orbital Mechanics		
$\frac{Orbital Mechanics}{e = \sqrt{1 - \frac{b^2}{a^2}}}$	(24.16)	
	(24.16) (24.17)	
$\overline{e = \sqrt{1 - \frac{b^2}{a^2}}}$. ,	

objects

25.0 Environmental Sustainability

colonies/mL = # colonies/dilution	(25.1)		
Transformation Efficiency (# Transformants/ μ g) = $\frac{\# \text{ of transformants}}{\mu g \text{ of DNA}} \cdot \frac{\text{final volume at recovery}}{\text{volume plated (mL)}}$ (25.2)			
# of moles of CO ₂	# of moles cons	umed in experiment	(25.2)
# of moles of glucose produced in formula	# of moles of glucose	e produced in experiment	(25.3)
Economic Growth = $\frac{\text{GDP}_2 \cdot \text{GDP}_1}{\text{GDP}_1}$	(25.4)	GDP = gross domestic product	
$R_f = \frac{\text{distance the substance travels}}{\text{distance the solvent travels}}$	(25.5)	R_f = retention factor	

